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Many studies [1-13] have been devoted to theoretical investigation of the dispersal 
of a shell under the influence of detonation products. Despite this, the effect of the frac- 
ture of the shell on its maximum velocity remains unclear. Here, we propose a mathematical 
model which accounts for fracture of the shell and the escape of detonation products between 
the fragments. It is shown that, in the case of axial detonation, allowing for fracture 
leads to a reduction in the maximum velocity of the shell by 20-30% compared to the case 
of the absence of fracture. 

i. We will examine a cylindrical shell with an internal radius a0, and external radius 
b ~ and a thickness H. A charge of explosive is located inside the shell, while air is lo- 
cated outside. After the detonation wave reaches the outside surface of the shell, it begins 
to expand rapidly. A complex shock-wave pattern develops inside the shell and the detonation 
products (DP). This pattern is tentatively depicted in Fig. 1 by the broken lines. Here, 
the DP occupy region D I, the solid shell occupies region D2, the fractured shell occupies 
region D3, and air occupies region D 4. The boundary of the shell, where there is a combina- 
tion discontinuity (CD), is represented by Fl, while F 2 represents the DP-air contact dis- 
continuity and F 3 represents the shock wave in air. Before fracture, the shell is described 
by the equations of an ideal elastoplastic medium [14] 
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where u2, 92, P2, e2, Si, oi, co, Y, and 7 are velocity, density, pressure, specific energy, 
components of the stress deviator and complete stress tensor, sonic velocity, and the yield 
points and shear modulus of the shell; k = i, 2, 3 is the symmetry parameter. The DP and 
air in regions D I and D 4 are described by the equations of an ideal gas, with ~ = 3 for the 
DP and y = 1 . 4  for air [i]: 
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(ul, 91, el, and Pl are the velocity, density, specific energy, and pressure of the gas and 
DP). Equations (I.i) and (1.2) are valid up to the moment of fracture t*, which is determined 
from the well-known Taylor criterion [2-4]. In accordance with this criterion, the shell is 
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considered to have fractured if tensile stresses o 2 > 0 were acting everywhere within it. 
Fracture takes place by brittle rupture (radial cracks). Here, the shell fractures into 
several fragments, the number of which can be found from semi-empirical formulas [i0, ii]. 
For the shell velocities examined in the present study, the number of fragments was on the 
order of 60. In the region D 3 the fractured shell was modeled by a porous incompressible 
piston: 
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where <u2>, <r2>, h, and P22 are the velocity, coordinate, thickness, and true density of 
the piston; p• is the pressure of the DP to the left and right of the piston; m1* and m2* 
are the minimum porosity and maximum volumetric concentration of particles in the piston. 
The sudden change in porosity at the inlet and outlet of the porous piston was spread out 
so that 
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(s = h/4, h' - s = h/4 is the width of the region over which the changes in porosity were 
spread out). In physical terms, this means that each pore can be modeled by a nozzle with 
a piecewise-linear profile. It should be noted that the width of the spread region does 
not affect the flow of the DP outside the porous piston if the inequality h' - ~ ~ <r2> 
is satisfied. The initial conditions for system (1.3) with t = t* are found from the formu- 
las 
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The equations for DP in a porous piston were obtained from the complete system of equations 
that describes the flow of a gas in the region of a CD [12]. This system has the form 
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Here, m2(t, r) is determined from (1.4), while <u2> is determined from (1.3); M12 is the 
Mach number; Pll is the true density of the gas. Using system (1.1)-(1.5), we formulate 
a problem in the region 0 ~ t < +~, 0 ~ r < +~ with the initial conditions u I = ui(r), @i = 
@i(r), E i = g(r), 0 < r < a 0 0 = _ , u 2 = 0, 92 = P2 , s2 = 0, o i = 0, a ~ < r < b ~ u i = 0, Pl 
01 ~ ~i = ~i ~ r > b ~ and boundary condition uz(r = 0) = 0. The velocities and normal stresses 
are equal at the contact discontinuities. With the given initial and boundary conditions, 
system (1.1)-(1.5) is solved numerically by an explicit "cross" scheme [13, 14] with first- 
order accuracy O(~, Ah) (~ and Ah are the time and space steps). 

2. We will examine two examples of the dispersal of a shell in the instantaneous de- 

tonation regime in the absence of air (010 = 0). 

Example i. Test Calculation of the Dispersal of an Aluminum Shell up to the Moment 
of Its Fracture. The characteristics of the shell material: 02 ~ = 2.7 g/cm 3, 72 = 2.18, 

= 0.25.10 = GPa, Y = 0.3 GPa, shell thickness h = 0.26 cm. The DP, with the parameters 
u = 3, 90 = 0.68 g/cm 3, e ~ = 4.2 kJ/g, were located in a cylinder of the radius a~ = 0.36 
cm. Here, $ = 0.127, where ~ = m/M, m being the mass of the DP and M the mass of the shell. 
Figure 2 shows the dependence of the velocity of the shell on the relative radius <u> (Aa/a~ 
Curves 1 and 2 are described by Eq. (2.1) from [2] without (Y = 0) and with (Y ~ 0) allowance 
for strength. Curve 3 corresponds to the numerical calculation. 

In our notation, 
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(D is the velocity of the detonation wave). It follows from Fig. 2 that the calculated velo- 
city of the shell is adequately described by the analytical relation <u> (a/a ~ obtained for 
an incompressible ideally plastic shell. 

Example 2. Dispersal of a Cylindrical Copper Shell under the Influence of DP Formed 
after the Detonation of Octof~. This problem was studied experimentally in [9]~ The shell 
was a long thin tube with a ~ = 1.27 cm, b ~ = 1.53 cm, and the length L = 30 cm. Detonation 
was initiated from one end, while the rate of expansion of the shell was recorded in the 
midsection 15 cm from the end of the tube. In this case, we could ignore the effect of the 
escape of DP through the end surface of the tube on the rate of its expansion in the midsec- 
tion. This, in turn, allowed us to compare experimental and theoretical dependences of the 
velocity of dispersal of the shell on time. Figure 3 shows the relation <u>(t) for the case 
when the DP were formed by octogen with the parameters Y1 = 3, p0 = 1.89 g/cm 3, and E ~ = 
5 kJ/g and the characteristics of the copper shell were p2 ~ = 8.93 g/cm 3, c o = 3.93 km/sec, 
u = 2.69, u = 0.39"102 GPa, Y = 1.8 GPa, $ = 0.5. The curve represents our calculation, 
while the points represent the experimental results [9]. The shell fractured at the moment 
t* = 6 usec. This was followed by the intensive outflow of DP in a regime that can be char- 
acterized by choking of the flow in the channels of the porous piston [12, 15]. In the mini- 
mum cross section (minimum ml), MI2 = 1. To the left of this section, M12 < l, while to 
the right MI2 >> i. Here u i - <u2> > 0. Allowing for fracture and the escape of DP leads 
to a small (5-6%) reduction in the maximum velocity of the shell compared to the case with- 
out fracture. We performed six calculations for different DP parameters corresponding to 
[9]. We obtained good agreement with the experimental time dependence of shell velocity 
<u>(t). 

3. Let us examine the dispersal of a copper shell in a regime whereby detonation is 
initiated on the axis. The characteristics of the shell material and the geometric param- 
eters of the problem are the same as in example 2. The DP were formed by the detonation 
of octogen with additives: p0 = 1.862 g/cm 3, D = 8.82 km/sec [i]. The initial conditions 
for the DP were determined by numerical integration of system of ordinary differential equa- 
tions (5.151)-(5.152) from [!], which describes the corresponding similarity solution~ In 
the present formulation, we studied the effect of fracture of the shell on its velocity and 
on the degree of dissipation of the energy of the DP by the shell. The calculations were 
performed with several values of ~. The thickness of the shell was also varied. For each 
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6, we calculated the mean-mass velocity of the shell with vf and without v 0 fracture at the 
moment t = 20 Dsec. The shell has had sufficient time to reach its maximum velocity by this 
point. We will determine the ratio ~ = vf/v 0 and construct ~ as a function of ~ (Fig. 4). 
It turns out that the value of ~ decreases from 0.97 to 0.73 in the interval 0.3 < $ < I. 
Thus, fracture of the shell and the escape of DP between the fragments leads on this interval 
to a substantial reduction in shell velocity and the degree of energy dissipation ~ = Mu2/ 
(2ms ~ = 8u2/(~D2). 

Figure 5 shows the ratio ~(~):~0($) for a shell without fracture and ~ f(8) for a shell 
with fracture. It is evident that the peak of the curve ~0(~) at the point ~ = 0.4 completely 
disppears in the case of a fractured shell. The large trough on the curve ~(~) is due to 
the fact that an increase in ~ from 0.2 to 0.4 is accompanied by a sharp decrease (by a fac- 
tor greater than two) in the critical strain el. This quantity is found from the formula 
ef = (a + - a~ ~ (a + is the internal radius of the shell at which it fractures). Along 
with ef(~), there is also a large reduction in the time to fracture. Thus, at ~ < 0.2, the 
characteristic time to fracture t* ~ 7-8 Dsec, while t* = 1.3-2 psec on the interval 0.3 < 

< 1.66. In the region 8 > 0.6, there is an increase in ~(~). This increase is connected 
with the fact that there is sufficient time for the shell to reach a high velocity before 
it fractures. In this case, el(S) remains nearly constant. The reduction in Ef(~) at 0.3 < 

< 0.4 is connected with the occurrence of wave processes in the DP. At $ < 0.2, there 
is sufficient time for the shock wave reflected from the shell to be reflected from the axis 
and catch up with the shell before it fractures. Thus, the entire region occupied by the 
DP participates in the shell's acceleration. At ~ > 0.4, the shell fractures before the 
shock wave reflected from the center catches up with the shell. In this case, only that 
part of the DP adjacent to the surface of the shell participates in its acceleration. After 
the shell fractures due to the escape of the DP and the pressure drop, its acceleration nearly 
ceases. In the case of the acceleration of a solid shell, the reflected shock wave catches 
up with the shell and produces an additional acceleration. 

Figure 6 shows the distributions of velocity u1(r) in the DP for ~ = 0.57 at the moment 
of fracture (curve 1 corresponds to instantaneous detonation, while curve 2 corresponds to 
axial detonation). In the case of instantaneous detonation, the entire DP region participates 
in the acceleration (u I > 0). In the case of axial detonation, only that part of the DP 
within the layer 0.9 cm < r < 1.44 cm participates in acceleration. In the layer 0.25 cm < 
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TABLE 1 

0,1 
0,t3 
0,18 
0,57 

(u), cm/lJsec 
theory 

tion 

8,2.t0-2 7,35.t0-2 
9,4.t0 -~ 8,4.t0 -~ 

OAt t,04-t0 -1 
0,1 0,t33 

,8 

t,66 
4,6 

luJ, cm/~sec 

theory calculation 

0,t57 0,164 
0A79 0,188 
0,24 0,236 
0,37 0,3 

r < 0.9 cm, the DP move toward the axis of the charge (u I < 0), while the DP are at rest 
(u I = 0) in the layer 0 < r < 0.25 cm. It follows from analysis of the data that sf and 

depend on the form of the pressure pulse in the DP and the characteristics of the shell 
material. Thus, sf = 0.37 and ~ = 0.89 with instantaneous detonation, while sf = 0.14 and 

= 0.72 with axial detonation. In both calculations, ~ = 0.57. It should be noted that 
the wave patterns in both the DP (Fig. 6) and in the shell differ significantly in these 
cases. In the case of instantaneous detonation, the relation of(r) is approximated well 
by a linear function which reaches a maximum on the outside surface of the shell [2]. For 

axial detonation, this relation deviates greatly from linearity. 

Figure 5 shows the relation o2(~) at the moment t = t* (~ = 0.57) [~ = (r -a)/h]. The 
maximum of of(g) is reached inside the shell and is more than twice as great as the yield 
point Y and the fracture stress of [i]. In the model proposed here, we ignored cleavage 
in the shell under the influence of radial tensile stresses [i]. This is connected with 
the fact that the fracture of a cylindrical shell is affected mainly by wave processes in 
the DP and the yield point of the shell material. Thus, the effect of cleavage on the fracture 

of the shell will probably be small. 

4. Let us give a theoretical estimate of the critical strain and velocity of a shell 
in the case of axial deformation for arbitrary ~. With small 6, the velocity of the shell 
can be calculated from (2.1) without allowance for strength (Y = 0). The value of Ef can 
be calculated from the equation [2] 

a+la~ = (Pc /Y)  11(2L), Pc = Pe t2 ,  s f - -  (a+ - -  aO)/a o. ( 4 . 1 )  

E q u a t i o n s  ( 2 . 1 )  a n d  ( 4 . 1 )  w e r e  o b t a i n e d  i n  t h e  i n s t a n t a n e o u s  d e t o n a t i o n  a p p r o x i m a t i o n .  T h u s ,  
a s  f o l l o w s  f r o m  t h e  c a l c u l a t i o n s ,  t h e y  a r e  v a l i d  f o r  ~ < 0 . 2 .  A t  ~ ~ 0 . 4 ,  wave  p r o c e s s e s  
i n  t h e  DP become  i m p o r t a n t .  To d e s c r i b e  t h e s e  p r o c e s s e s ,  we u s e  t h e  a n a l y t i c a l  s o l u t i o n  
f o r  t h e  a c c e l e r a t i o n  o f  an  i n c o m p r e s s i b l e  p i s t o n  b y  a d e t o n a t i o n  wave  i n  t h e  p l a n e  c a s e  [ 1 ] .  
I t  i s  c l e a r  t h a t  t h e  s o l u t i o n  w i l l  be  a p p r o x i m a t e  f o r  a c y l i n d r i c a l  s h e l l .  N o n e t h e l e s s ,  
t h e  a p p r o x i m a t i o n  t u r n s  o u t  t o  be  s a t i s f a c t o r y  i n  t h e  g i v e n  c a s e .  T h i s  h a s  t o  do p a r t l y  
w i t h  t h e  f a c t  t h a t  t h e  d i s t r i b u t i o n  o f  t h e  p a r a m e t e r s  o f  t h e  DP b e h i n d  t h e  d e t o n a t i o n  wave  
f r o n t  i s  s i m i l a r  i n  t h e  p l a n e  a n d  c y l i n d r i c a l  c a s e s .  A l s o ,  i t  f o l l o w s  f r o m  t h e  c a l c u l a t i o n s  
t h a t  t h e  r e l a t i v e  e x p a n s i o n  o f  t h e  s h e l l  b e f o r e  f r a c t u r e  i s  s m a l l  ( s f  g 0 . 2 ) ,  s o  t h e  c o r r e -  
s p o n d i n g  c h a n g e  i n  t h e  R i e m a n n  i n v a r i a n t  i s  a l s o  s m a l l .  I n  a c c o r d a n c e  w i t h  [ 1 ] ,  f o r  t h e  
c y l i n d r i c a l  c a s e  and  u = 3 we h a v e  d ( u  1 + c )  = - ( u i c / r ) d t .  P r o c e e d i n g  on t h e  b a s i s  o f  t h i s ,  
we o b t a i n  I A ( u l  + e ) / ( u  1 + c )  I ~ < u > A t / r  ~ ~f  ~ 1 i n  t h e  r e g i o n  ABC a l o n g  t h e  c h a r a c t e r i s t i c  
d r  = ( u  + c ) d t .  B e f o r e  t h e  s o l u t i o n  f r o m  [1]  i s  u s e d ,  i t  m u s t  b e  n o t e d  t h a t  t h e  d e t o n a t i o n  
wave  i s  b e i n g  r e f l e c t e d  f r o m  a c o p p e r  s h e l l ,  n o t  a r i g i d  w a l l ,  a n d  t h e  p r e s s u r e  i n  t h e  r e -  
f l e c t e d  wave increases by a factor of 1.56. Allowing for this fact and the cylindrical sym- 
metry of the problem, we rewrite the formulas from [I] in the form 

c = a~ 0 = (i  + 2N(t - -  a~ - v  >-, 

a = D t ( l  - -  (i  - -  0)/N0), 

<u> = D ( t  - -  (t - -  0)/N0) - -  a~ ~1 = k ~ / 2 ,  

P - -  k p e ( c / D )  ~, P e  = 9oD21(?~ q -  1), 

(4.2) 

where c and p are the sonic velocity and the pressure on the surface of the shell; <u> and 
are the velocity and coordinate of the shell; k is the coefficient of reflection of the 

shock wave. The amount of fracture of the shell is determined from the Taylor condition 
p = Y. With the use of (4.2), it follows from this that 

k P e ( a ~  i- 21|(t - -  a~ =- y (t '  ~= t* I a~  
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Solving this equation for t', we obtain 

(4.3) 

We used Eqs. (4.1)-(4.3) for several values of ~ to calculate the critical strains el' and 
the velocity of the shell <u>. For shells with ~ < 0.2, sf' was calculated from Eq. (4.1). 
For ~ e 0.4, it was calculated from (4.2) and (4.3). In the latter case, we assumed that 
k = 1.56, a~ = 1.3 cm, D = 0.882 cm/Dsec, Pe = 0"362"102 GPa, Y = 1.8 GPa, ~ = 0.785, and 

= 0.032. The relation ef'($), shown by the dashed line in Fig. 4, agrees well with sf(~) 
obtained from the numerical calculations. Table 1 shows the velocity of the shell <u> at 
the moment of fracture for several values of 6- The second column of the table gives the 
values found from (2.1) and (4.1) with ~ ~ 0.18 and from (4.2) and (4.3) with ~ e 0.57. The 
third column shows values obtained from the numerical calculations. It is evident that with 
fixed $ the velocities are fairly close to one another. The shell does not reach more than 
10% of the maximum velocity after fracture due to the escape of the detonation products. 
This makes it possible to use Eqs. (2.1) and (4.1)-(4.3) to evaluate the velocity of the 
shell in engineering calculations. Here, we chose the Taylor fracture criterion, which is 
valid for thick shells [3, 4]. In the case of thin shells, it is necessary to use the ener- 
gy criterion in [I0]. This leads to some change in the velocity of the shell and in frac- 
ture strain. In particular, the scale effect is manifest as a result of the use of this 

criterion. 

In conclusion, we note that the observed phenomenon of a substantial reduction in shell 
velocity due to fracture will also evidently hold for thin shells, since it is due to wave 
processes occurring in the detonation products. However, this issue requires additional 
study. 
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